
F-mft6 056 ON USING MULTIPLE INVERTED TREES FOR PARLLEL UPDATING v/1
I OF GRAPH PROPERTIE..(U) MARYLAND UNIV COLLEGE PARK DEPT
I OF COMPUTER SCIENCE S PAWAGI ET AL. NRY 85 CRR-TR-124

UNCL SSIFIE R FOSR TR 45 N9991 4-84-K-05 9 F/ 12/ NL

MEu.

-.------- - 4. "-.b

1., fiU

1.2 111 . .

IL

MIClP R.._-,""JEST"CH."

-, .

4-- . ..-

336

-4.

.. , .

,-°o"- . . -.
o

4-.
.

, ".
* . . .4 .4 4.-- - . . . ° '

-1 7- 7 .-- F T 17 7 "

l : .TiR. .86-0 0 4

I. V. Rawukrish

, CAR-TR-124 May 19, '3,5€.
CS-TR- 1502""-

On Using Multiple Inverted Trees for Parallel |.,

Shaunak Pawagi
I. V. Ramakrishnan

Department of computer Science
University of .Maryland

College Park. N1D 207-12

00

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

Approved for public r. Ble,"

d4istribut ion unliated..

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742 a E L''d ~~~EL ' n!:~:
~APR 1 06e

86 4 3
---.- ,

r.

:-- -~

'pCAR-TR-124 May 1985

CS-TR-1502

*On Using Multiple Inverted Trees for Parallel ".'.
" ~Updating of Graph Properties (":

:':' ~~Shaunak Pawagi•"-- ". ,
:" ~I. V. Rarnakrishnan.-"'-

Department of computer Science T ' :-
University of Maryland .- :

.- College Park, MD 20742 E LE C i t-" ".-

i% ,

ABSTRACT"

*Fast parallel algorithms are presented for updating the distance matrix, shortest - - -paths for all pairs and biconnected components for an undirected graph and the topolog-
ical ordering of vertices of a directed acyclic graph when an incremental change has been
made to the graph. The kinds of changes that are considered here include insertion of a .vertex or insertion and deletion of an edge or a change in the weight of an edge. The
machine model used is a parallel random access machine which allows simultaneous.,'..
reads but prohibits simultaneous writes into the same memory location. The algorithms ,are efficient when compared to previously known O(a) time start-over algorithms forts

initial computation of the above mentioned properties of graphs. The previous solution
is maitained in multiple inverted trees (a rooted tree where a child node points towards
its parent) and after a minor change the new solution is rapidly recomputed from these
trees. u p

decie i hsppe eur 0(lon)tme and us 0K roesos'.ee-lortm
are support ow theAir corpeOir oftoc Reseoh nndesr ont a lgoit faor"

initial scomp utaon o the ffbeoNvel mentedr pndrCoperatie o00f- -0 graphs. The eviossluStine

% its pare~Fondt) nd rafte aE mnoS-hng th0nw3sluio is gratefuly recomutwdfrdged.s

"t Yo?" C2d.4In~Tur ask",A
MA2?IJ.%0 UWrP&,VR 1 O t

Cbior, ?*#hnj~aj

1,~~~
.___

_
SThe support of the first author by the Air Force Office of Scientific Research under Contract F.49620-83-C-0082. and

of the second author by the Office of Naval Research under Contract iN00014-84.K-0530, and by the National Science
Foundation under grant ECS-84-4399, is gratefully acknowledged.

II

1. Introduction

Incremental graph algorithms deal with recomputing properties of graph after an

incremental change has been made to the graph. Such recomputations are also referred

to as "updating" graph properties. Sequential incremental algorithms for recomputing

minimum spanning trees [81 connected components [3] and shortest paths [4] have

appeared in the past. However, except in [7], incremental algorithms have not been stu-

died for any model of parallel computation. Parallel algorithms for several graph prob- .:

* . lems have been devised [5,6,8,9 and 11] for an unbounded model of parallel random .]

- access machine (PRAM). In this model of computation all processors have access to a

global memory and processors can simultaneously read from the same location but no

two processors can simultaneously write into the same location. The algorithms

-" developed on this model of computation provide us a basis to compare the complexity of

our incremental algorithms. In this paper we describe incremental algorithms for updat-

ing the distance matrix, shortest paths for all pairs and biconnected components of an

undirected graph and topological ordering of the vertices of a directed acyclic graph

(DAG). Our algorithms for updating these properties require O(log n) time on a PRAM

and therefore are efficient when compared to the start-over algorithms for initial compu-

tation of these properties that require O(log2 n) time.

The kinds of minor modifications that are considered here are as follows. First, a

vertex may be added along with the edges incident on it. Second. an individual edge

may be deleted or added. If an edge has a weight associated with it then an increase or

decrease in its weight is permitted. Note that an increase or decrease in the weight of an

edge encompasses an edge deletion or insertion operation, because we can treat the

nonexistent edges as having infinite weights.

I --°. -°. -.

4° . °
-..-. , °

2

An important aspect of incremental algorithms is the design of data structures to

store the previous solution as well as some auxiliary information that is generated during IF

the initial computation Such data structures should provide rapid access to the necessary

information for efficient updates of the solution. As we will see later on our update algo- '

rithms require fast identification of the vertices that belong to two different subtrees

that are created by deleting an edge from the tree. For an inverted tree (a rooted tree

where a root node points towards its parent) this computation can be done in O(log n)

time (see 111]). It was shown in [71 that an inverted spanning tree can be used to update

*a minimum spanning tree, connected components and bridges of an undirected graph in

* O(log n) time on a PRAM. In this paper we use n such inverted spanning trees for

* updating the distance matrix, shortest paths for all pairs, biconnected components and

topological ordering of the vertices. Specifically, in the distance matrix the i'h row

*defines a distance tree (DT) for the underlying graph and such a tree is rooted at vertex

i. (A distance tree is in fact a shortest path tree for an unweighted graph.) Now, for a

*graph -ith n vertices, if we store n such trees (each having a different root) then we can

quickly identify the pairs of vertices whose distances must be recomputed after the

graph undergoes a minor change. In the case of shortest paths for all pairs, we store the

* shortest path trees as inverted trees. The longest path trees that are involved in the

computation of topological ordering of the vertices of a DAG, are stored as inverted

* trees. In order to update biconnected components efficiently wye store n inverted span-

* ning trees, one for each graph Ci that is obtained from the original graph G by deleting

- vertex.

The rest of the paper is organized as follows. In Section 2 we describe some graph-

theoretic preliminaries adopting the framework in 1111. In Section 3 wv describe our algo-

rithms for updating the distance matrix. In Sections 4 and 5 we extend the ideas of

3 V:

Section 3 to update shortest paths for all pairs and topological ordering of the vertices of

a DAG respectively. Our algorithms for updating biconnected components are described

in Section 6.
,'I@

2. Preliminaries

In order to describe our algorithms to update graph properties we now present

some graph theoretic preliminaries.

Let G=(V,E) denote a graph where V is a finite set of vertices and E is a set of

* pairs of vertices called edges. If the edges are unordered pairs then G is undirected else

it is directed. Throughout this paper we assume that V={1,2,...,n}, IVJ=n and IEI m.

". We denote the undirected edge from a to b by (a,b) and the directed edge between them

- by <ab>. We say that an undirected graph G is connected if for every pair of vertices

u and v in V, there is a path in G joining u and v. Each connected maximal subgraph

of G is called a component of G. An adjacency matrix A of G is an nXn Boolean matrix

such that Au,vl=1 if and only if (u,v) f E. A tree is a connected undirected graph with

no cycles in it. Let T=(V' ,E') be a directed graph. T is said to have a root r, if r E

and every vertex v e V is reachable from r via a directed path. If the underlying

undirected graph of T is a tree then T is called a directed tree. If the edges of T are all

reversed then the resulting graph is called an inverted tree. An inverted spanning tree -

(IST) and an inverted spanning forest (ISF) are defined similarly. We denote an

undirected path from vertex a to vertex b by [a-bl and directed path by [a- b. We say

that vertex w is an ancestor of vertex v if w is on the path from v to the root of the

tree. Let T be a directed tree with uv V' Then the lowest common ancestor

(LCA(u.v)) of u and v in T is the vertex w cV such that w is a common ancestor of u

and v. and any other common ancestor of u and v in T is also an ancestor of w in T.

-..... ..

4 .-...-

As we will see later on, our update algorithms require the paths from all vertices to ..

the root in an inverted tree. Tsin and Chin [111 have described a technique due to

Savage [8] to compute all such paths. For completeness we now describe their technique. :- -,

Let T =(V ,E') be an inverted tree with V ={1,2,...,n} and IV' I=n. Let r be the

root of this tree. For a directed edge <a,b> we say that vertex b is the father of vertex

* a.

Definition: F:V' -V' is a function such that F(i)--the father of vertex i in T for izr

and F(r)=r.

The function F can be represented by a directed graph F which can be constructed

from T by adding a self-loop to the root r.

From the function F, we define Fk, k>O as follows.

Definition: Fk:V' -V' (k>O) such that F(i)=i for all i c V and Fk(i)=F(Fk-l(i)) for .

alliE V and k>O.

If i is a vertex in T, Fk(i) is the kth ancestor of i in the inverted tree.

Definition: For each i e V' , depth(i)=min{klFk(i)=r and 0 < k <n}.

Lemma 2.1: Given the function F of an inverted tree, Fk can be computed in O(log

n) time using O(n2) processors.

ItI
Proof: To compute F (O<k<n) we proceed as follows. We assume that the processors '.-

are indexed as P(1,1), P(1.2),.... P(nn). The instructions within "pardo...dopar" are exe-

cuted in parallel and comments are enclosed within

Throughout this paper, we use log n to denote [log.2n 1

A •'

//Processor P(1,i) executes the instruction within pardo...dopar.//

1. for all i (l<i<n) pardo F(i)=i, F1(i)=F(i) dopar;

2. for t:=O to log(n-1)-1 do

//Processor P(s,i) executes the instruction within pardo...dopar.//

for all s (l<s<2t) and for all i (l<i<n) pardo F2'+ :=F 2 (F((i)) dopar;

We compute the function Fk by successive composition of the functions F' i < k, which

have been determined in previous iterations. The number of iterations that are marked

in each iteration increase by a factor of two. Since a vertex can have at most n-I ances-

tors, we need O(log n) iterations to mark all ancestors. Now step (1) can be done in con-

stant time using n processors. To do the ith iteration of step (2) in constant time we

require 21n processors. As there are log(n1)-I iterations of step (2), we therefore require

O(n2) processors. U

The actual computations of Fk(i) (l<i<n, l<k<n) are performed in an array F t

in which F[i,k] contains Fk(i). Once the F' array is computed, depth(i) (1<i<n) can

be found by performing a binary 'earch on the ith row. We search for the leftmost

occurrence of r. This takes log n time by assigning a processor per row. However, it can

be done in constant time by assigning a processor to each element in F'. This is done as

L
follows. Every processor compares its element with the elements in its left and right

neighbors. There is exactly one processor which does not have all the three elements

identical or distinct and this processor locates the leftmost occurrence of r. The depth

information is stored in a one-dimensional array H'.

After the computations for H' are finished, each row of F- is right shifted so that

all the r's except the leftmost one are eliminated. As a consequence, the rightmost

column of the array contains only the root r. Fig. 2.1 illustrates an inverted tree and its

..........................

array F' after the rows have been shifted right.

Lemma 2.2: We can compute the lowest common ancestors of all vertex pairs in the 57

inverted tree in O(log n) time using O(n 2) processors.

I.

1 4

7 1 3 6 - -.

8 L-

1 3 1 1 5 129 _

2 3 4 S 7 g 9 10 11 12

02 2 1

22LL

6° 4I I "
* I I - 614.2::

7 - - !' '° 2" :""
I I LI a Ha _

1) " _

4! 211 0 1 2

11, 1 3 i'O°1 2

Undefined entries are left blank.

Fig. 2.1 9
44-

- 1 U

! ,: ,Al

7
'.

Proof: We make use of the array F + to design a parallel algorithm for finding the

lowest common ancestors. For an n vertex graph there are nC2 (the number of unor-

dered pairs of n elements) vertex pairs, that is O(n2) pairs. Let a and b be a vertex pair.

If c is their lowest common ancestor, then row a and row b of F + will have identical con-

tents for column n-1, column n-2,..., down to the column containing c. After this

column the contents of rows a and b differ. As a result, to determine c, we can perform

a binary search on row a and row b simultaneously in the following way. If the two
I[

entries being examined in row a and row b (in the same column) are different, the search

is continued on the right half, otherwise it is continued on the left half. It takes (log

n)-1-1 time steps to find c with one processor. Therefore we need O(n 2) processors to find

the lowest common ancestors of all vertex pairs. LI

Having obtained the lowest common ancestor we can now identify the unique path

between any two vertices (passing through their lowest common ancestor).

3. Distance Matrix

In this section we consider updating the distance matrix of an undirected graph

whose edges have uniform weights. For a graph G its distance matrix D is defined as fol-

low$.

1, if (ij) is an edge of G

Di~j' d. d is the length of the shortest path i-j'
oc, if no such path exists

Note that D is symmetric and the adjacency matrix A is contained in D. The dis- _

tance matrix has several applications. For instance, the radius, diameter and the center

of a graph are defined in terms of its distance matrix. The distance matrix has also been

rused in for detecting graph isomorphism.
"'--

- ... -.. ,- .- -..

._ .m ,m= _ lml~

The problem of updating the distance matrix involves recomputing D for the

modified graph that is obtained from the original graph after a minor change has been L

made to it. Cheston III has studied sequential algorithms for updating the distance

matrix. Our algorithms for updating the distance matrix on a PRAM require O(log n)

time and use 0(n 3) processors. The start-over algorithm for initial computation of D

requires O(log2n) time and use 0(n') processors. Our algorithms therefore are efficient

when compared to the start-over algorithm.

To design efficient parallel algorithms for updating the distance matrix we proceed

as follows. The first step is to determine the vertex pairs whose distances are unaffected

by the graph change. In particular, we need to compute these pairs after an edge has

been deleted from G. Note that the ith row of D corresponds to a DT (distance tree) for

G, that is rooted at vertex i. Our update algorithms require that n such DTs for G, one

for each row of D, be stored along with the matrix D. We speed up the computation by

storing these trees as inverted trees. Now, an edge deletion operation may create two

subtrees out of a single DT. Using the techniques described earlier (see Section 2), we can

identify the vertices that belong to each of these subtrees in O(log n) time. Therefore we

can determine the entries of D that are unaffected by the graph change. After the matrix

D has been recomputed we can reconstruct these DTs as inverted trees.

The other cases of edge and vertex insertion can be handled without DTs. We do

not consider the problem of vertex deletion, since deletion, of a vertex from a tree may

split it into more than two subtrees. We are unable to handle this situation using our

approach.

In order to describe the actual computational steps of our algorithms and the proof

of their correctness, we first describe the parallel start-over algorithm for computation of

the distance matrix.

Start-Over Algorithm V

It has been observed in [2] that distances for all pairs of vertices in a graph

2

(directed or undirected) can be computed in 0(log2 n) time on a PRAM by straightfor-

ward parallelization of the known sequential algorithm that is based on repeated multi-

plication of the adjacency matrix. In this parallel algorithm addition and minimization

operations replace multiplication and addition operations of an inner product step. We L.

refer to this as the plus-min multiplication of two matrices. The algorithm initializes the

distance matrix D to the adjacency matrix A and then performs (log n) iterations of the

plus-min multiplication of D by itself. The matrix DD is used as temporary storage in

the algorithm for clarity.

,/All steps involving i and j are executed for all i, j I<i<n and <j:n /
I1. D1i,j] := Ati,j] //Initialize// .

2. for t:=1 to log(n-1) do

2a. DDfi,j] : min { Dli,ji, D[i,k] + D~k,j] } 7/ l<k<n i=k j=k/.

2b. D[i,j: DD[i,jj

Algorithm 3.1

Lemma 3.1: The above algorithm computes the distance matrix D in O(log2 n) time
r

using 0(n 3) processors.

Proof: Steps (1) and (2b) can be done in constant time using n- processors. Step (2a)

0 can be done in 0(log n) time by assigning n processors to compute each element of the

matrix DD Since DD has n2 elements we need 0(n 3) processors to perform step (2a)

Note that at the end of tth iteration we would have found distances for those pairs

whose vertices are at most 2t units apart. Since the maximum distance for anY pair of

I °

10 .,

vertices is at most (n-i) units, we need log(n-1) iterations of step (2a). -

Construction of Distance Trees from D

We now describe the computational steps for constructing n DTs, each rooted at a

different vertex. Let T denote a DT that is rooted at vertex i. Recall that the function

F completely specifies an inverted tree (see Section 2). Let the function Fi completely

specify T i. Fi is computed as follows.

1. Set Fi(i) i, because i is the root of the tree.

2. For every vertex in T i other than its root, determine its father in T i. This can be

done in O(log n) time using n processors for a vertex. Consider vertex j and let its

distance from the root be di. Therefore the father of j must be a vertex that is (di -

1) units away from the root. Assign n processors to j and select a vertex k such

that k is adjacent to j and (dj-1) units awaN from i. Select a minimum k to break

the ties. Set Fi(j) k. Since j can have at most n neighbors this minimization

needs O(log n) time and n processors. As there are n vertices in each tree we need

0(n2) processors to construct T i. Therefore we have the following lemma.

.. Lemma 3.2 The construction of n DTs from the matrix D requires O(log a) time and

" uses O(n 3) processors.

We now proceed to describe our update algorithms and the proof of their correct-

n ess.

Edge deletion

The problem of edge deletion update is concerned with recomputing the distance

matrix D after an edge has been deleted from the graph. In order to recompute D, we

..

11

-:7~~~ .9 -7 -: -

first identify the pairs of vertices whose distances are unaffected by the edge deletion

step. We then construct matrix D' such that

D[i,jl, if D~i,j] is unchanged.
D'j oo otherwise V

Now, two iterations of steps (2a) and (2b) of Algorithm 3.1 on D' recompute the

distance matrix for the new graph. We will show later on that two iterations are

sufficient for recomputing D. The computational steps are described for tree T. There .. "

are n such trees and the following steps for T i are executed in parallel for all of them.

Let (x,y) be the edge that was deleted from G. Also assume that the Ti's have been

constructed from D. .

1. If (x,y) is not in T then the ith row of D is not affected at all. This is so because T i

stays connected even after (x,y) has been deleted from G. Therefore the distances

to all other vertices from i in the new graph do not change.

Now suppose that the edge (x,y) is in T i.Assume, without loss of generality

that its direction in T is from x to y. To delete (x,y) set Fi(x)- x. This creates a

forest of two subtrees one of which is rooted at i and the other at x.

2. Compute the array Fj for T i.The last column of this array identifies the vertices

that belong to different subtrees. The vertices in the subtree rooted at x are not

reachable from i in T i.Therefore their distances from i must be recomputed. By

Lemma 2.1, computation of the array F17 takes O(log n) time and requires O(n2)

processors.

. 3. Compute the it row of D' as follows. The distances to the vertices that are not

reachable from i are marked as oo. For other vertices that are reachable from i, the

distances have not changed. This step can be done in constant time using 0(nU

12

processors.

4. Perform two iterations of the start-over algorithm on D' to compute the updated

distance matrix. This computation requires O(log n) time and uses O(n 3) processors

We now prove the correctness of our algorithm.

, Theorem 3.1: Two iterations of the start-over algorithm that operates on D' are

sufficient to compute the updated distance matrix for the new graph.
oo .

Proof: Consider the tree rooted at i (see Fig. 3.1). Let (x,y) be the edge that was

deleted. If (x,y) is a bridge of G then (x,y) is present in all DTs, and hence in T i. Dele-

tion of (x,y) disconnects G as well as all Ti's. The vertices in the subtree rooted at x are

not reachable from i in G. Therefore D' itself is the new distance matrix.

On the other hand if (x,y) is not a bridge of G then there exists at least one edge in

G that connects these two subtrees that were created by deletion of (x,y). Let u be a ver-

tex in the subtree rooted at x that has such an edge incident on it. Since T is a DT for

G, u can have neighbors that are at a distance d,, du+l or du-1 (where du is the distance

to u from i). Therefore at the end of the first iteration (i.e., plus-min multiplication of

D' by itself) we would have found the distances to all such u's from i.

Now consider a vertex v that does not have a neighbor in the subtree rooted at i.

The shortest path from i to v must pass through some such u (a vertex that has a neigh-

bor in the subtree rooted at i). Therefore the distance to v from i can be expressed as

the sum of distances, one from i to u and the other from u to v. Now, at the end of the

second iteration we would have computed the distances to all such v's from i. This

* requires that D' ru.v' must not have been marked as oc in step (3) of our algorithm. In J

other words, v must be reachable from u in the DT T, even after the edge (xy) has been

.............. .o°

413

Y

.1o

jy I
III2.

Fig. 3.1

*deleted from G. 'We now show that this indeed is the case

The subtree rooted at x contains a path 'u-v that passes through their lowest corn-

*mon ancestor. The length of this path is (d,~-dr -2d ,,), where w = LCA(u,v). This path

is shorter than any other path 'usv that contains the edge (x.v), because the length of

-such a path is at least (d,,-d,-2d.) and d,<d,, (note that v is an ancestor of w).

.

14

-. Therefore the DT T. contains the shortest path from u to v that is either a concatena-

tion of paths (u-wi and [w-v, or a path shorter than this, which does not contain (x,y).

.: Hence the distance D[u,v] is not affected by deletion of (x,y).

It is possible that vertex v is reachable from many such u's, but the minimization

operation will select a vertex that minimizes the length of the path from i to v. There-

fore at the end of the second iteration we would have computed the shortest paths to all

vertices from the root i. Hence the theorem. U'

• The ideas described in this proof will be used in subsequent sections to outline the

similar proofs.

Theorem 3.2: Our algorithm updates the distance matrix of an undirected graph after

"" an edge deletion operation in O(log n) time and use O(n3) processors.

Proof: By Lemma 3.2, the construction of the DTs needs O(log n) time and O(n 3) pro-

cessors. The computation of the array Fj requires O(log n) time and 0(n2) processors.

"" As there are n such trees, we need O(n3) processors for step (2). The matrix D' can be

. constructed from D and the arrays F,+ in constant time using O(n 2) processors. Now two

* iterations of the start-over algorithm are sufficient to compute the new distance matrix.

- By Lemma 3.1, each iteration needs O(log n) time and uses O(n3) processors. U

Edge and Vertex Insertion

We now describe our algorithms for updating the distance matrix after an edge or a

vertex has been inserted into G. In order to compute D' from D after an edge insertion

.. operation we proceed as follows. Let (u,v) be the edge that has been inserted into G.

*: 1. Set D' 'u,vj = D' [v,u = 1. All other entries of D' are the same as that of D. '

-.
%L

I

15W.e

2. Perform two iterations of the start-over algorithm that uses D' as its input to

compute the updated distance matrix.

In the case of vertex insertion we add a new row and a column to the old distance

matrix. Let z be the new vertex that has been inserted into 0. Now D' can be obtained

from D by setting D' Iz,w] = D' [w,z] - 1, for all w, where w is adjacent to z. All the -

other entries in the zth row and in the zth column are marked as oo. Again, two itera-

tions of the start-over algorithm recompute the new distance matrix.

Theorem 3.3: Our algorithms for edge and vertex insertion update require O(log n)

time and use O(n3) processors.

" Proof: For an edge insertion update we can compute D' from D in constant time using

one processor and this step for a vertex insertion update requires 2n processors. The rest

of this proof is along lines similar to that of Theorem 3.1. .

4. Shortest Paths

We now extend the techniques of the previous section to handle weighted graphs.

The problem of updating the distance matrix gets transformed to updating shortest

paths in an undirected graph. Let L:E--R denote a function that associates a length

*- with the edges of G. The lengths of the shortest paths for all pairs are stored in a

matrix P such that P'i,jl is the length of the shortest path from vertex i to vertex j.

The problem of updating shortest paths involves recomputing the shortest path

matrix P from the previous such matrix when the length of an edge has changed or a

vertex has been inserted or deleted from the graph. We refer to these two problems as

the edge update and the vertex update problem respectively. The start-over algorithm

A- in 21 for computing shortest paths for all pairs on a PRAM requires O(log n) time and

°oo.• . .- °.. %-° °•°. ..°° "o% . • .-.................. °..........'......... .• • - ° .. °o. ° ° o .

-°

uses 0(n3) processors. Our algorithms for the above mentioned update problems require

O(log n) time and use O(n 3) processors.
*-

Recall that our algorithms for updating distance matrix use n DTs of the graph.

For updating shortest paths we employ shortest path trees (SPTs) for this purpose.

Since we are dealing with weighted graphs, the shortest path matrix P cannot be used to

construct the SPTs. In order to construct SPTs using the technique for constructing the

DTs, we actually need the number of edges on all shortest paths. Therefore, the start-

over algorithm described in the previous section needs to be modified to compute this.

This information is stored in the matrix D wherein D[i,j] is the number of edges on tl.-'

shortest path from i to j. The SPTs that are constructed from D are maintained as

- inverted shortest path trees.

We now describe the start-over algorithm for computing the shortest paths that

has been modified to compute D.

Start-Over Algorithm

As described earlier, the parallel algorithm for computing shortest paths for all

pairs is based on the repeated plus-min multiplication of matrix P that has been initial-

ized to edge-lengths. The computational steps are as follows.

F'..
.,All steps involving i and j are executed for all i,j 1< i < n 1< j < n

1. Pri.j! L(i.j) the length of edge (i.j)/2 -
D~i.jl : 'i,j! /A is the adjacency matrix.//

2. for t 1 to log(n-1) do

2a. .i.j mi (J P~ik - } /, k 3iand k 3j//

2b. DDij' D ik - D'kj for the same k obtained in the step 2a/,.

2c. Pij PPij: Di.jI: DD i,j.-

Algorithm 4.1

". ~ ~ ~ ~ ~..•.°.. ~ ~ ~ ~ A - I E- .1 *.. ° "- '_ " - " " .. % -% % • . . . %. . •"

17

Lemma 4.1: The above algorithm computes the shortest path matrix P in O(log2n) time
S(..;

and requires O(n3) processors.

Proof: The proof of this lemma is similar to that of Lemma 3.1. -

We now proceed to describe our algorithms for updating shortest paths. First, we .

compute the matrices D' and P' that contain the information unaffected by the incre-

mental change. Now two iterations of the start-over algorithm on D' and P' are

sufficient to recompute D and P for the new graph.

Edge Update

Assume that the length of an edge has changed. There are several cases to be han-

died. First, the length of an edge may either decrease or increase and this edge may

either currently be in some of the SPTs or may not be in any of the SPTs. We describe

our algorithm with respect to a SPT T that is rooted at i. Note, however, that there are

n such trees and all of them are processed in parallel.

Let (x,y) be the edge whose length has decreased. Assume, without loss of general-

ity that if (x,y) is present in T i then its direction is from x to y. If (x,y) is not in T, then

let y be closer to the root i than x.

1. If (x,y) is not in T then there must exist a shortest path [x-y] such that

L(x,v) > Px.v]. Now if the new length of (x,y) is still greater than or equal to that

of the path 'x-yl then T i does not change. Therefore the ith row of D and P

remains unchanged.

On the other hand if the new L(x,y)<P[x,yl then we have a shorter path from i

to x and to all descendants of x (see Fig. 4.1). Let 6 D'x,v] - 1. Now the number

of edges on the shortest paths from i to x and to descendants of x have reduced by

'8
1

I'.,

Y

x--

Fig. 4.

6.~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ Thrfr ep'Lj ~j ,weej sete radsedn fx h

te. thefo seto ij i -6 hr ete x ord aoit descendants oav reuedb. Theoteenrs

p 19 V

of the ith row of P' are the same as that of the jth row of P.

2. If (x,y) is in Ti then the shortest paths from i to x and to its descendants have

reduced by Al, where Al is the reduction in the length of (x,y). In this case D

remains unchanged but the it h row of P is affected. Therefore set P' [i,jj = Pli,j] -

Al, where j is either x or a descendant of x.

3. Perform one iteration of the start-over algorithm to recompute the matrices D and

P for the new graph.

Now suppose that the length of (x,y) has increased. If (x,y) is not in T then none

of the distances from i to other vertices change. Hence the ith row of D and P are

unaffected. If (x,y) is in Ti then set P' [x,yj to the new length of (x,y) and the rest of P'

is the same as P. The matrix D is not affected at all. In this case two iterations of the

start-over algorithm on D' and P' update the matrices D and P.

Theorem 4.1: Our algorithm for the edge update problem requires O(log n) time and

uses O(n 3) processors.

Proof: We can find descendants of x in constant time using our computation of the

function LCA (see Section 2). For instance, vertex w is a descendant of x if LCA(x,w) is

x. We need n-I processors to determine all descendants of x in constant time By Lemma

2.2. LCA for all pairs of vertices can be obtained in O(log n) time using O(n) processors.

All other steps except the iterations of the start-over algorithm can be done in constant

time using 0(n 2) processors. As there are n such SPTs we need 0(n3) processors. By

Lemma 4.1. one iteration of the start-over algorithm can be done in O(log n) time using .

0(n3) processors. The proof of the sufficiency of two iterations for recomputing D and P

is along the same line as that of Theorem 3.1.

.

I 20

Note that our algorithm can easily handle the cases where an edge is inserted or

deleted from the graph, since we can treat the nonexistent edges as edges having infinite

weights.

Vertex Update

The problem of vertex update deals with recomputing the shortest paths after a

vertex has been inserted into the graph. We add a new row and a column to D' and P'

for the new vertex z. Now set D' [w,z] D' [z,wI = 1 and P' [w,z] = P' [z,w]

L(z,w), where w is a neighbor of z. All other entries of zth row and Zth column of D' and

P' are respectively set to 0 and oo. Now execute the start-over algorithm on

D' and P' . Two iterations of step (4) would recompute the updated D and P. There- j-

fore we have the following theorem.

Theorem 4.2: Our algorithm for the vertex update problem requires O(log n) time and
S

uses (n3) processors.

Proof: The proof of this theorem is similar to that of Theorem 3.3. -

5. Topological Ordering

In this section we describe our algorithms to update the topological ordering of the

vertices of a DAG after an incremental change has been made to G. This is an impor-

rant property of D.AGs and finds applications in activity networks and in critical path

analysis of networks.

Definition: For different vertices u and v of a DAG G, u is a predecessor of v iff there is

a directed path from u to v.

:: ;:52..--;-?.::--k-2 .Z ':-'- .:. -,2.......- ---...- :-.-" :::'.. .-'.. .--.-.-.. .-.. .-.....- -..-.-.-.-.- --.-. .--..

21

The topological ordering of the vertices have the property that if vertex i in G is a

predecessor of vertex j, then i precedes j in the ordering of the vertices of G. The topo- F

logical ordering is defined for directed acyclic graphs. Now, acyclicity of the graph may

not be preserved after the graph has been modified. But our algorithms are capable of

detecting such anomalies.

Dekel et al. [21 observed that the algorithm for shortest paths for all pairs can be

used to compute the lengths of the longest paths. This requires using maximization in

place of minimization on the shortest path algorithm. For ease of exposition, we now

describe their algorithm. Note that we are dealing with an unweighted graph.

1. First, determine the lengths of the longest paths for all pairs using the technique

discussed above. Store the results in the matrix D. This step needs O(log2) time

and O(n3) processors. Note that D is asymmetric and if D[i,i] > 0 for any i

I 1< i < , then G is not acyclic. ,

. Set D[l,i] = 0 for all i such that D[t,i] = 0, for 1 < t < n. Note now that D[1,i.

= 0 for exactly those vertices in G that have no predecessors. This step can be

done in 0(log n) time using O(n2) processors by assigning n processors to a vertex.

Let i,, i2, ..ik be k such vertices that have no predecessors.

3. Now for each j such that D[1,j13O (i.e. those vertices with predecessors) set DI1,i'

max { D[iP,k } 1 < p < n. Since this step involves finding a maximum of at

most n numbers we need O(Iog n) time and O(n) processors.

4. Sort the pairs { D[1,j], j in increasing order to obtain the topological order of the

vertices. Sorting requires O(log n) time and O(n2) processors.

Observe that except step (1) all other steps can be done in O(log n) time. Therefore,

if we can recompute the matrix D for the modified graph in O(log n) time, then we have

-• .'• 9

...................... - . .°.. .°

22

O(log n) time algorithm for updating the topological ordering of the vertices of a DAG

The ith row of D defines a longest path directed tree that is rooted at i. The edges "

of these trees are oriented from root to the leaves. However, for computational purpose

we store these trees as inverted trees. Using the techniques described in the earlier sec-

tions we construct the matrix D' from D in O(log n) time using O(n3) processors. Now ,

two iterations of the longest path algorithm would recompute D. Perform the steps (2),

(3) and (4) to obtain the topological order of the vertices of the new graph. The longest

path trees can be constructed from D in O(log n) time using O(n3) processors, according

to the technique for constructing DTs from D (see Section 3). Therefore we have the fol-

lowing theorem which is stated without proof.

Theorem 5.1: The topological ordering of the vertices of a DAG can be updated in

O(log n) time using 0(n 3) processors.

The ideas employed here are essentially the same as those described in Sections 3

and 4. Therefore we have omitted the actual computational steps.

6. Biconnected Components

The problem of updating biconnected components of a graph deals with recomput-

ing the sets of vertices, one for each component, after an incremental change has been r-

made to the graph. The best known algorithm for finding biconnected components .11

requires O(log 2 n) time. Our approach to updating biconnected components is based on

the start-over algorithm due to Savage and Ja'Ja'[9. Our algorithms for edge and ver-

tex insertion update require O(log n) time and use 0(n 3) processors.

\Ve assume that the update algorithms operate on a set of inverted spanning forests

(ISF) that is defined as follows. Let Gk denote a graph that is obtained from G by

23 bs

deleting vertex k. Deletion of k may split G into components, each of which can be

represented by an inverted spanning tree for that component. Let Si denote the IE

corresponding ISF for Gk. To compute the biconnected components of G from this set

,o of Sk'S, we proceed as follows.

Let R be a binary relation on V. For i,j E V, i R j if i and j are in the same bicon-

nected component of G. Now, i and j are in the same biconnected component if there

does not exist vertex w, such that after removal of w from G, i and j are not reachable

from each other in G w. Therefore R can be determined from the Gk's as follows. i R j

iff for all k distinct from ij they are in the same connected component of Gk. We can

compute the relation R in 0(log n) time by assigning n-2 processors to each vertex pair.

First, we check in constant time if i and j are in the same connected component of Gk.

The results of (n-2) such tests are then merged in a "binary tree" fashion to reach the

final decision in 0(log n) time. As there are 0(n 2) vertex pairs, to determine R we need

0(n 3) processors. In order to compute the biconnected components from R we use the

following lemma.

Lemma 8.1: Let T be a spanning tree for G and (ij) be an edge of T; then

V j = { k E V /i R k .and jRk }

is the vertex set of the biconnected component that contains the edge (ij).

Proof: The proof is immediate from the definitions of R and the set Vi. :

Lemma 6.1 provides us an algorithm to determine the vertex sets of all biconnected

components using an IST T for G and the relation R. We can construct all sets Vij in . -

constant time by assigning n processors to each edge of T. As there are n-1 edges in T

we need 0(n 2) processors. Therefore we have the following theorem.

... ~ .

24

P .0.-

Theorem 6.1: The biconnected components of an undirected graph can be updated in

O(log n) time using O(n3) processots.

Proof: The ISF for a graph can be updated in O(log n) time using O(n 2) processors (see

[7] for a proof). Therefore the collection of n ISFs, (i.e, Sk's), one for each Gk and an IST

T for G can be updated in O(log n) time using O(n 3) processors. The computation of R

from this collection needs O(log n) time and O(n 3) processors. The construction of ver-

tex sets for biconnected components from the relation R can be done in constant time

using O(n3) processors. .

The sets of vertices thus constructed may have duplicates. For instance, if tvo

edges of T, say (ij) and (u,v), are in the same biconnected component then the

corresponding vertex sets V1j and V, that are determined using them are equal. It is

easy to discard the multiple copies of such sets in constant time using O(n3) processors.
-- The details of this step are omitted.

7. Conclusions

Incremental graph algorithms deal with recomputing properties of graph after an

incremental change has been made to the graph such as insertion of a vertex or an edge

or deletion of an edge. In this paper we have described parallel algorithms for updating

the distance matrix, shortest paths for all pairs and biconnected components of an

undirected graph and topological ordering of the vertices of a DAG, after an incremental

change has been made to the graph. Our algorithms require O(log n) time and use O(n 3)

processors and therefore are efficient when compared to the start-over algorithms for ini-

tial computation of the above mentioned properties of graphs. \Ve have shown that mul-

tiple inverted trees constitute a very useful data structure for developing incremental

* 25 .

algorithms. It would be interesting to explore the applicability of this data structure to

other graph problems. r
I.=.

References

* [I] G. Cheston, "Incremental Algorithms in Graph Theory", TR 91, Dept. of Corn-

puter Science, Univ. of Toronto, Toronto (1976).

[21 E. D. Dekel, D. Nassimi and S. Sahni, "Parallel Matrix and Graph Algorithms",

SIAM J. Comput., 10 (1981), pp 657-675.

[3] S. Even and Y. Shiloach, "An On-line Edge Deletion Problem", J. ACM, 28 (1982),

pp 1-4.

4 S. Fujishige, "A Note on the Problem of Updating Shortest Paths", Networks, 11

(1981), pp 317-319.

* -51 D. Hirschberg, "Parallel Algorithms for the Transitive Closure and the Connected

Component Problems", Proc. of Eighth "A Symposium on Theory of Computing

(1976), pp 55-57.

[6] D. Hirschberg, A. K. Chandra and D. V. Sarwate, "Computing Connected Coi-

ponents on Parallel Computers", Comm. ACM, 22 (1979), pp 461-464.

[7' S. Pawagi and I. V. Ramakrishnan, "Parallel Updates of Graph Properties in Loga-

V: rithmic Time", Int. Conf. on Parallel Processing, 1985 (to appear).

8 C. Savage, "Parallel Algorithms for Some Graph Problems", TR-784, Dept. of

Mathematics. Univ. of Illinois, Urbana (1977).

9 C. Savage and J. Ja'Ja', "Fast Efficient Parallel Algorithms for Some Graph Prob-

lems", SL4,\[J. Comp., 10 (1981). pp 682-691.

p. .Iv

- ft

1 28

[10] P. Spira and A. Pan, "On Finding and Updating Spanning Trees and Shortest

Paths", SIAM J. Cornp., 4 (1975), pp 375-380.

-[III] Y. Tsin and F. Chin, "Efficient Parallel Algorithms for a Class of Graph Theoretic

Problems", SIAM J. Cornp., 14 (1984), pp 580-599.

A.

.*.- I .-;.- o ,-.,: ;. - - .. .:, -- :- -- 7 -i:. '-'':' - ": -.. ' - : :'" . . Z. . . .
'I..=S.)

_°

-I°

,-.A -

FILMED
o,

,.4 *1.°

I I

[L

4.. l d= _ P _ =_ _ i -- - - -

